Liouvillian First Integrals of Differential Equations

نویسنده

  • Michael F. Singer
چکیده

Liouvillian functions are functions that are built up from rational functions using exponentiation, integration, and algebraic functions. We show that if a system of differential equations has a generic solution that satisfies a liouvillian relation, that is, there is a liouvillian function of several variables vanishing on the curve defined by this solution, then the system has a liouvillian first integral, that is a nonconstant liouvillian function that is constant on solution curves in some nonempty open set. We can refine this result in special cases to show that the first integral must be of a very special form. For example, we can show that if the system dx/dz = P(x, y), dy/dz = Q(x, y) has a solution (x(z), y(z)) satisfying a liouvillian relation then either x(z) and y(z) are algebraically dependent or the system has a liouvillian first integral of the form F(x, y) = J RQdx RPdy where R = exp(/ U dx + V dy) and U and V rational functions of x and y . We can also reprove an old result of Ritt stating that a second order linear differential equation has a nonconstant solution satisfying a liouvillian relation if and only if all of its solutions are liouvillian.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liouvillian First Integrals of Second Order Polynomial Differential Equations

We consider polynomial differential systems in the plane with Liouvillian first integrals. It is shown that all such systems have Darbouxian integrating factors, and that the search for such integrals can be reduced to a search for the invariant algebraic curves of the system and their ‘degenerate’ counterparts.

متن کامل

Liouvillian First Integrals for Generalized Liénard Polynomial Differential Systems

We study the Liouvillian first integrals for the generalized Liénard polynomial differential systems of the form x′ = y, y′ = −g(x) − f(x)y, where g(x) and f(x) are arbitrary polynomials such that 2 ≤ deg g ≤ deg f .

متن کامل

Determining Liouvillian first integrals for dynamical systems in the plane

Here we present/implement an algorithm to find Liouvillian first integrals of dynamical systems in the plane. In [1], we have introduced the basis for the present implementation. The particular form of such systems allows reducing it to a single rational first order ordinary differential equation (rational first order ODE). We present a set of software routines in Maple 10 for solving rational ...

متن کامل

First Integrals of a Special System of Odes (TECHNICAL NOTE)

In this paper we suggest a method to calculate the first integrals of a special system of the first order of differential equations. Then we use the method for finding the solutions of some differential equations such as, the differential equation of RLC circuit.

متن کامل

Algorithms and Methods in Differential Algebra

Founded by J. F. Ritt, Differential Algebra is a true part of Algebra so that constructive and algorithmic problems and methods appear in this field. In this talk, I do not intend to give an exhaustive survey of algorithmic aspects of Differential Algebra but I only propose some examples to give an insight of the state of knowledge in this domain. Some problems are known to have an effective so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1988